Integer or Fixed-Point Math Lesson
[image: image1.png]

Mark McLeod - Team 358 Robotic Eagles

January 2007

Integer math is much more efficient (many times faster) than floating point math. Small word size and integer math keeps the processing time (cycles), size, cost and power consumption down on microcontrollers. The embedded processing we do on the FIRST robotic controller deals with limited resources of program/variable space and limited time in which to perform our calculations. Floating point values are necessary to preserve fractional accuracy. Many operations get by quite easily with purely integer values, but sometimes additional accuracy is required, such as dealing with sine/cosine values.

The idea behind integer or fixed-point math is we pretend there is a decimal point and where it is. Instead of thinking in units of “1”, we think in units of “.01” for example. Instead of holding 1 apple, we might think of it as having 100 slices of an apple. Talk about your accuracy!
Understanding Your Numbers and Calculations

The language will do exactly what you tell it to, but that extends beyond some things people take for granted.

Programmers must pay particular attention to the range a variable is designed or expected to have. Each of the variable types in C is limited in size and can only hold so much. If you try to stuff a larger number into it, the computer will not complain or warn you, it will just chop of the part that’s too large to fit and continue on its merry way. You’ll be left trying to figure out why your program can only count to 255. Beyond that, you must also know how large intermediate results in any of your calculations will be, because you must instruct the compiler to use temporary storage that’s large enough to hold the largest possible intermediate result that can be produced by one of your calculations.

For example, a “char” type is limited to holding numbers in the range of 0 to 255. So in the case of:

char x, y, z;

int a;

x = 255;

y = 255;

z = x + y;

z (a char) will obviously not hold the 510 result, and would leave you with a bogus value. But you might be surprised to learn

z = (x + y) / 2;

and even

a = (x + y) / 2;

will both also produce incorrect results even though the final value (255) fits into a char. This is because the C18 compiler will use only the largest variable type to the right of the equal sign within a calculation to hold intermediate results (in this case 510). Interestingly enough even z = 255 + 255; will fail because constants default to the smallest type that will hold them.

C programmers use typecasting to order (or force) the compiler to use a particular variable type. The solution in this example would be:

a = (int)(x + y) / 2;

The Trouble With Floating Point

Floating point calculations on a microprocessor that lacks a floating point processor requires much more time and space than the native integer math. This is because additional system software is loaded to break down and do calculations in the chip’s native word size (the FIRST Robotics PIC is an 8 bit processor).

Using the following simple calculation as an example and performing the operation with each of the variable types: char, int, long, and float will produce the results in the table.

 a = 5; b = 7;

 c = a * b;

	
	Program space
	Time
	Increase over char
	Increase over previous type

	
	(in bytes)
	(clock ticks)
	space %
	time%
	space %
	time %

	char
	22
	18
	0.0%
	0.0%
	0.0%
	0.0%

	int
	68
	71
	209.1%
	294.4%
	209.1%
	294.4%

	long
	136
	125
	518.2%
	594.4%
	100.0%
	76.1%

	float
	556
	170
	2427.3%
	844.4%
	308.8%
	36.0%

Note: these measurements are for a single occurrence of the calculation and will differ with subsequent releases of the C18 compiler and libraries. Time was measured by an internal timer and averaged over several minutes. Space was measured using the .map file optionally generated by the C18 compiler.

Size Matters

If you are performing a single calculation then the program space and extra time required may not impact you enough to matter. However, if you are repeatedly performing a large number of calculations, in a loop for example, the extra time can add up. It can pay to use the smallest variable type possible if you care about processing speed and memory utilization.

char, int, long table

Truncation

Integer variables can only hold whole numbers.

2/5 = 2 NOT 2.5 in integer math because any fractional part, in this case .5, is truncated or discarded.

Overflow

unsigned char x;

x=256; // result is 1 because char only holds values 0 to 255

Preserve Original Data

Accumulate original or raw data and avoid data that’s been truncated by calculations. The smallest units preserve precision. Try to work from original data in the original units if possible, e.g., count using clock ticks rather than seconds. Always convert to seconds from clock ticks in the final calculation when necessary, but avoid carrying that seconds value forward if it corrupts your accuracy. Raw data can be converted into new forms like minutes, seconds, clock ticks as long as precision is preserved.

Order of Operation

Maintain accuracy when performing calculations by doing all multiplications first, then all the divisions. E.g., 100 * 150 / 100 = 150 while 150/100 * 100 = 100 in integer math because the result of 150/100 (1.5) gets truncated to an integer (1). CAUTION: Be sure the largest possible intermediate result will fit in the variable type you have chosen.

Use Fractions

When you need fractional constants keep them in the form of fractions, e.g.,

#define MYFRACTION 150/100 // instead of 1.5

then use them only at the end of a calculation to keep the division until last, e.g.,

In integer math,e.g.,
x = 1234 * MYFRACTION; // = 1851

but

x = MYFRACTION * 1234; // = 1234

Since #define's don't evaluate expressions.
You don't evaluate (150/100). You evaluate (x * 150 / 100).
To get a floating point effect you do all your multiplication first, then all your division.

Just be careful to type cast the expression to the largest size you need to avoid an intermediate calculation overflow, e.g., using char for the above will return an incorrect result.
Adding Precision

While thinking in powers of ten (base 10) may be comfortable, it is more efficient to adapt to the native base 2 used by the controller. You’ll use every available bit of accuracy this way. To get the very best accuracy simply shift values, e.g., x << 2 will give you 2 bits of additional accuracy. Each shift multiplies by 2. The fractional part is of course in terms of base 2, so what this means is if you shift one bit left you gain an accuracy of ½ (.5, 1.5, 2.0, 2.5…), shift two places gives you ¼ (.25, .5, .75, 1.0,…) , 8 places 1/64 (1/64, 1/32, 3/64, 1/16,…).

You can always shift the result back to get the original units truncating the fractional part (or adding ½ to round), but accuracy is maintained if you keep everything in the increased accuracy units and only shift back when absolutely necessary, e.g., to print out the result.

If you prefer to think in terms of powers of ten then to add precision you can represent fractions as larger numbers by shifting the decimal point, e.g., instead of PI=3.14 use PI=314 (PI times 100). You’re using part of the integer as the fractional part and are truncating some decimal position, like the 1/1000 place. Just be sure to use large enough types to accommodate the larger values, shift all your calculation values, and think in the new units you’ve created.

Instead of:

x=3.14 * 27.0

you do

x = 314 * 2700

In other words you write your code to work and manipulate in units of 1/100’s (or .01). 90 degrees would be expressed as 9000.

You can also create your own units by scaling your range of values to exactly fit the range of a variable type, e.g., 0 to 255 (or –128 to 127) for char, -32768 to 32767 for int, etc.

Multiplication/Division

"x / 16" is the same as "x >> 4"

When using increased integer or fixed-point precision the operations of addition and subtraction work as expected. However, multiplication and division are a little harder and must be handled a little differently because an unwanted factor is introduced with each operation. It’s actually the same as you learn to multiple by hand any two numbers with decimals, you must shift the decimal place. It’s easiest if both numbers have the same precision, so we’ll make that assumption in our examples.

To illustrate, say you increase the precision of your integers by shifting your decimal point right one place, i.e., by a factor of 10. So 1 now becomes 10 and to return to the original units you just shift the decimal one position left (/10). Multiplying 1 x 1 would now look like 10 x 10 = 100, but you’ll notice the decimal would now have to be shifted left two places to get back to the correct original units. So each multiplication would have to include a divide by 10 to maintain the proper units.

 Using the “bit shift” method of adding accuracy, for instance:

x = newvalue << 8; // Add space for increased precision

y = (x * x) >>8; // removes the extra undesirable factor produced

Division has the reverse problem and the correction would look like:

y = (x <<8) / x; // removes the extra undesirable factor produced

A clear solution is to create C macros to handle unique operations involving multiply and divide.
Debug Printing

To print out the decimal equivalent you print the part before the imagined decimal and the fractional part afterwards separately:

printf(“%d.%d”, (x>>8), ((x) & 0x00ff) >> 8));

Really large numbers

Write your own routines to split a very large integer into two 32-bit words. Basically, design your own extended integer definition and +-*/ functions that handle and carry the overflow to your extended word.

Trig

Table lookup vs calculation

The brad is an angular measure arrived at by dividing a circle into 256 (fits in a char type) arcs, instead of the customary 360 degrees. A brad is 360/256 = 1.406 degrees, e.g., 0 to 90 degrees translates as 0 to 64 brads.

The normal 0 to 1 range (abs) of the sine and cosine is usually scaled to –127 or 0 to 127.

Or you could use -32767 to 32768 where 32768 = pi and -32768 = -pi

Courtesy of Leo M, team 384:

arccosine = ((1-(x/118))*(((-x-181)*x+48472)/769)) + ((x/118)*((((-3*x+707)*x-41331)/20)))

arcsine = ((1-(x/118))*(((x+181)*x+744)/769)) + ((x/118)*(((((3*x-707)*x+42611)/20))+((x-115)/3)))

The (x/118) and (1 - x/118) use integer math to turn the two curves on and off at the right time. In integer math 117/118 =0 and 127/118 = 1.
